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An Assessment of the Adaptive Unstructured Tetrahedral Grid,
Euler Flow Solver Code FELISA

M. Jahed Djomehri∗ and Larry L. Erickson∗∗

Ames Research Center

SUMMARY

A three-dimensional solution-adaptive Euler flow
solver for unstructured tetrahedral meshes is assessed,
and the accuracy and efficiency of the method for pre-
dicting sonic boom pressure signatures about simple
generic models are demonstrated. Comparison of com-
putational and wind tunnel data and enhancement of
numerical solutions by means of grid adaptivity are
discussed. The mesh generation is based on the ad-
vancing front technique. The FELISA code consists
of two solvers, the Taylor–Galerkin and the Runge–
Kutta–Galerkin schemes, both of which are spatially
discretized by the usual Galerkin weighted residual
finite-element methods but with different explicit time-
marching schemes to steady state. The solution-
adaptive grid procedure is based on either remeshing or
mesh refinement techniques. An alternative geometry
adaptive procedure is also incorporated.

INTRODUCTION

The degree of flow field complexity surrounding
high-speed aircraft is primarily related to the aircraft’s
geometry and speed. The flow field may consist of one
or more complex, highly nonlinear regions containing
shocks, shear layers, concentrated vortices, etc., and
zones of interactions among these.

One major obstacle in the application of CFD to
realistic aircraft is proper discretizaton of the physi-
cal space, known as grid generation—a procedure that
has recently been characterized as a bottleneck over-
all in CFD applications (ref. 1). Despite the vast ef-
fort that has been made to develop various sophisti-
cated structured and unstructured grid packages in re-
cent years (ref. 2), the time required for grid generation
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still makes up a large portion of a typical CFD applica-
tion. For instance, with the state-of-the-art multiblock
structured-grid-generation software package (ref. 3),
the time required to generate a suitable grid for a com-
plex geometry is on the order of several months. Al-
ternatively, recent methods based on unstructured grids
have shown promise of reducing the time to weeks.
These approaches have not yet become practical in
generating cells of high aspect ratio (ref. 1), such as
those required in boundary layers and wake regions
of viscous flow calculations where flow gradients are
strongly one-dimensional (1-D), with large Reynold
numbers (differences of several orders of magnitude
in normal and streamwise discretization). Neverthe-
less, they have demonstrated strong potential in han-
dling complex geometries for inviscid problems. Many
important and interesting features of the flow about
high-speed aircraft, such as shock formation and flow
separation from sharp edges, are essentially inviscid,
rotational physical processes.

To resolve the grid requirement for integrated
viscous and inviscid calculations, some recent works
(refs. 4–7) have adopted the strategy of combining the
structured and unstructured grids such that local re-
gions of the structured grid are embedded within a
global unstructured environment. Interfaces between
regions have either one-to-one or overlapped connec-
tions. Both cases require special procedures to trans-
fer flow variables across interfaces which are known
as the internal boundary conditions. For overlapped
connections, interpolatory procedures are used. For
one-to-one connections, flow quantities at the interface
computed from the structured grid region are simply
passed to the unstructured grid zone.

The increased flexibility offered by unstructured
grids in achieving automated grid software should not
be the only motive behind their use. They can also
be used to achieve enhanced solution algorithms by
techniques known as solution adaptive grids. These
methods (refs. 8–12) have been the subject of active



   

research in recent years and have proved to be practi-
cal tools in many two- and three-dimensional problems.
They enhance solution algorithms without excessively
increasing the global number of grid points and/or em-
ploying further complex high-order resolution schemes
(refs. 13–16).

Structured grid methods are essentially limited by
the effort to preserve orthogonality and smoothness of
the grid lines and by the lack of ability to refine or
unrefine the grid locally. The latter feature is crucial
in dealing with complex flows around realistic config-
urations. The unstuctured grid data system easily lends
itself to development of such schemes.

This work provides an assessment of the unstruc-
tured grid code FELISA. It allows 3-D modeling of in-
viscid flows about complete aircraft. The code was ini-
tially developed at the University College of Swansea
and Imperial College and has been supported through
grants with the NASA Langley and Ames Research
Centers. The package consists of a grid generator, a
flow solver, and a solution-adaptive grid generator. A
brief description of the method follows in subsequent
sections of this report. The code has been tested on
geometrically simple 3-D problems ranging from tran-
sonic to supersonic speeds. Five applications are dis-
cussed in this report. Three of these test cases are
generic configurations that have been used since the
study, in the early 1970s, of sonic boom problems
where the computational data are compared with wind
tunnel results. These configurations consist of a low-
aspect-ratio rectangular wing with parabolic sections,
a cone-cylinder, and a delta wing-body with a leading-
edge sweep of 69 deg with double wedge sections.
This work was motivated by national interest in the
study of the feasibility of supersonic transports.

GRID ALGORITHM

Among various unstructured grid-generation algo-
rithms, two categories predominate: those based on
the Voronoi/Delauny technique (refs. 11 and 12) and
those based on the Advancing Front technique (refs. 9
and 10). The major differences are that the former is
more efficient and easily used but does not exploit the
benefit of the irregularity of the grid as much as the
latter does. That is, with Voronoi/Delauny types, it is
assumed that points of triangulation have been given
in advance by a set of nonrandom points. These points
usually form an ordered set similar to the structured

grid data, whereas with the Advancing Front types,
new grid points are generated according to user-input
grid-spacing parameters, allowing variable grid spac-
ing and better control.

The grid-generation scheme here is based on the
Advancing Front method. This method is discussed in
detail by Peraire, et al. (ref. 9). It uses the concept
of a background grid to define the spatial variation
of the element base length, δ, the stretching factor, s,
and the stretching direction, α. The background grid
is a coarse grid formed by four noded linear tetrahe-
dra covering the whole domain, and includes the far
field of interest. The user should supply the values of
the parameters at every node of the background grid;
indeed, for every direction, α, there are two associ-
ated orthogonal directions and two related stretching
parameters whose magnitudes are proportional or equal
to the factor, s. These parameters within the domain
are obtained by linear interpolation over the pertinent
nodal values of tetrahedra supplied by the background
grid. Grid clustering can also be furnished by means
of functional representations, such as exponentials de-
fined in the neighborhood of user-specified points or
line segments. The coordinate information pertinent to
these points or lines is supplied through background
grid data.

The solution domain is bounded by a collection of
“boundary surfaces” that define the confining flow field
boundaries. These surfaces define the geometry of the
model, the symmetry planes, and the far-field bound-
ary surfaces. Each boundary surface is an m by n net-
work of topologically rectangular nonself-intersecting
surfaces (networks). The points are ordered in a fash-
ion that defines a clockwise direction as the positive
orientation on the surface, with its normal pointing into
the field. Boundaries of each network consist of finite
curves defined between two endpoints by a number
of points that naturally impose a positive orientation
along the curve. One boundary edge in each network
can be collapsed to length zero. Each boundary curve,
also called “boundary edge,” is a smooth curve (i.e., it
contains no “kinks”) whose line segments are common
between two networks. Every boundary edge always
identifies an abutment between two and only two net-
works. Care must be taken that the data defining each
network consist of nonskewed, topologically subrect-
angular cells with aspect ratio no larger than ten. A
sufficient number of points must be given to properly
represent the curvatures of the edges and surfaces at
areas containing bends, twists, etc. Depending on the
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complexity of the model, the process of preparing the
input geometry data file could be time consuming. This
task could be automated, because of the similarity be-
tween the geometrical format used by FELISA to rep-
resent the model and that of the standard CAD/CAM
systems.

Analytical representations of boundary curves and
surfaces are accomplished by composite cubic and
bicubic (a tensor product) interpolation. The surface
triangulation process begins with the discretization of
the boundary according to local grid spacings obtained
from the background grid. The initial front for each
surface region is formed by the segments joining two
successive boundary points. The smallest segment on
the front is selected to construct a new triangle con-
strained by the parameters δ, s, and α. The front, then,
is updated accordingly. The process is repeated until
there is no segment left on the front. Once surface
triangulations are completed, their assembly forms the
initial front for generating the new tetrahedral points
in the field. The procedure continues (ref. 17) in the
same fashion as the triangulations.

Although the choice of grid parameters for the
Advancing Front method offers considerable freedom
in achieving variable grid spacing in the field, the nu-
meric values should be chosen to avoid skewness in
the triangulation process. Discretization of the sur-
face should properly represent scales and curvatures of
the model; deviation could introduce spurious wavelets
and pressure distributions which could severely perturb
near and far field flow characteristics.

In general, there is no rigorous approach for pre-
dicting the grid spacing parameters. The considerable
effort by which a proper grid can be generated may
present quite an inconvenience. Repeated trials are
necessary to set these parameters. Unsmooth distri-
bution of parameters on the nodes of the background
grid often leads to physically impossible conditions so
that the code cannot complete the surface/volume dis-
cretization. The fronts become corrupted and/or the
procedure falls into infinite loops of deleting and gen-
erating points in an attempt to correct itself. The proce-
dure is highly sensitive to the adjustment of directional
stretching parameters. These parameters are initially
set to unit vectors for almost all applications in this
work, with the stretching parameters about unity. With
this approach, generation of smooth grids with variable
grid spacing directionally have been found challeng-
ing. Some stumbling blocks such as those mentioned

above, which are fatal to grid completion, could be
easily alleviated by local treatment procedures. One
could incorporate a measure (not currently included)
to detect the quality of the elements after or any time
during grid generation, and then disassemble bad el-
ements and a few layers of their closest neighbors,
leaving a cavity in the grid with a new front. Then
the Advancing Front procedure could be reinvoked to
patch the grid. The procedure could be reiterated sev-
eral times if neccessary: each time, further neighbors
should be disassembled and local grid-spacing param-
eters should be smoothed in order to avoid creation of
the same elements.

The current method has been most successful in
the presence of uniform and slowly varying parameters
where one must exercise less tuning, but the result is a
relatively larger number of tetrahedral elements. This,
of course, is evident in view of the fact that algorithmic
procedures of the Advancing Front method are inher-
ently based on a uniform triangulation procedure. For
configurations with highly variable geometrical scales
and curvatures—such as surfaces with relatively small
thicknesses, leading and trailing edges, slender conical
bodies with small half-cone angles—one should en-
sure that grid-spacing parameters are sufficiently small
to allow proper discretization so that the characteristic
element length varies slowly across regions of differ-
ing scales. To generate a satisfactory initial grid, pre-
serving the curvature of the geometries and ensuring a
smoothly varying grid across the field, users will need
to develop expertise in the use of the various parame-
ters in the code.

Various ad hoc approaches have been used to con-
struct the background grid. One relatively easy ap-
proach is to specify grid parameters on a planar mesh
of triangular elements lying on a plane orthogonal to
the Cartesian coordinate axis x, y, or z. Then, by mov-
ing the plane parallel to itself or rotating it about a co-
ordinate axis, one generates layers of 6-noded prisms,
easily subdivided into three tetrahedral elements, which
cover the entire domain. The grid-spacing parameters
are specified on each node of the planar mesh and iden-
tically copied to translated/rotated nodes of tetrahedra.
This approach is a simple extension of 2-D parameters
to 3-D. Although quite efficient, it will not offer the
desired grid spacing for many 3-D geometries. To alle-
viate this problem, one can redefine the nodal grid pa-
rameters for those nodes of the background grid whose
coordinates fall in certain user-specified regions of the
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space. The regions may simply be defined by the max-
imum/minimum of (x, y, z) coordinates confining the
region and/or limiting conical angles in space.

Another simple approach implemented in this ap-
plication is the construction of a coarse background
grid by subdividing a box which inscribes the domain
using a structured Cartesian grid where hexahedral el-
ements are subdivided into six tetrahedra. The de-
fault grid parameters at each node of the structured
grid are modified either locally or according to the
user-specified region as described above. Pirzadeh
(ref. 18) has introduced another interesting approach
for background grid construction that is based on uni-
form Cartesian meshes where tetrahedral elements can
be formed as described but the grid parameters are de-
termined by solutions of Poisson equations with speci-
fied discrete source terms, as in heat conduction prob-
lems. This approach gives a smooth variation of grid
parameters and has proved practical.

ADAPTIVE METHODS

Solution adaptive methods are efficient schemes
to enhance solution algorithms; they have been used
extensively in recent years. Three major categories of
techniques that have been applied to 3-D flow prob-
lems are mesh movements (ref. 8), mesh refinement
(ref. 19) and remeshing (ref. 20). The main procedure
in all these approaches is (1) to identify an error or an
adaptivity criterion as a measure of the solution error
and (2) to use the criterion as a driving mechanisim
to concentrate or delete grid points in areas of high or
low gradient.

Refinement and remeshing techniques are both
used in the current FELISA code. These procedures
are applied in a batch-mode fashion for steady state
problems. That is, at prescribed time intervals, the
computed solution data on the current grid are passed
to the adaptive procedure, where a new solution adap-
tive grid is generated. The flow solver again is applied
and a new solution on the new grid is obtained. This
procedure may be repeated several times until a sat-
isfactory solution is reached. For problems with an
initially large number of elements, only one or two
repetitions of the procedure can be practically exer-
cised, because of restrictions on CPU time, memory,
and access to the system.

The adaptive criteria for the remeshing approach
follows the 1-D concept of equidistribution of the er-
ror. That is, the product of a measure of the second-
order derivative of a prescribed key physical variable,
σ, such as density, and a measure of the element length
at each grid point is set to be constant over the entire
field. One can then predict the element length for each
cell of the adapted mesh locally in a 1-D sense. For
3-D problems, the matrix of quadratic coefficients (i.e.,
the matrix of second-order derivatives) at each grid
point is computed and the magnitude of eigenvalues
and the directions of the corresponding eigenvectors of
this matrix are used to implement the above equidis-
tribution concept locally. A new background grid with
elements and grid points equal to those of the initial
grid is generated. The local directional stretching pa-
rameters of the new background grid at each point are
computed in the local principal coordinate directions,
i.e., the eigenvectors mentioned.

The adaptive criteria for the refinement approach
are much simpler than for the remeshing one. They
are merely based on the subdivision of the marked
tetrahedral elements. A measure of the gradient that
is based on the magnitude of divided differences of
a key variable is computed over all edges of the el-
ements. Subsequently the elements are marked for
possible subdivision if their magnitudes fall above (or
below) a prescibed threshhold value. This procedure
is not based on the equidistribution concept described
earlier. However, the repeated application of the pro-
gram would eventually lead to equidistribution of the
error in the field. Depending on the number of edges
marked per element, each element is subdivided into
eight, four, or two elements. This approach has the
tendency to increase the number of elements by a fac-
tor of eight of the number of marked elements. For
example, an initial grid of 500,000 elements that has
only one-tenth of its elements marked for refinement
would yield a final grid of nearly 1,000,000 elements.
The number of elements in overall application could be
optimized if further accurate measures of error and/or
efficient derefinement schemes were used. The code
does not currently have a derefinement capability.

The current adaptive programs as applied to some
of the examples shown in this work have frequently
failed to complete the procedure. For instance, for two
examples, the slender cone-cylinder and the wing-body
problem, the remeshing approach failed to regenerate
the new grid for the various prudent ranges of param-
eters specified by the authors. The root of the problem
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seemed to rest with the nonsmooth parametrizations
of the background grid which consequently generated
nonsmooth surface triangulations of the body and/or
tetrahedralization of the field by the Advancing Front
method. Application of the refinement approach was
also unsuccessful when applied to the wing-body ex-
ample because the code miscalculated coordinates of
the boundary points. Here a problem arises for proper
calculation of the coordinates of the subdivision points
that are supposed to lie on the surface of the model.
Coordinates of subdivision points, which are normally
located at the midpoints of tetrahedral edges, can be
computed by a simple arithmetic average of coordi-
nates of the corresponding two vertices of the edge.
For the calculation of midpoint coordinates of bound-
ary edges, however, additional precautions are neces-
sary to assure that they lie on the proper boundary
surfaces. The parametric representation of these sur-
faces, which has been employed in surface grid gener-
ation procedures, is used to determine the coordinates
of new boundary points. This portion of the refinement
algorithm has been found erratic when applied to the
wing-body example above.

Regions consisting of weak shocks are difficult to
detect properly by the usual error measures, particu-
larly in the presence of stronger shocks and/or expan-
sions. In solving cone-cylinder and wing-body prob-
lems we have observed that the conical weak shocks at
the apex of the cone had not been effectively detected
in either of the above adaptive programs. Numerical
experiments with relevant parameters that are designed
to control the density of grid points in the critical re-
gions had failed to properly cluster grid points in this
region. To alleviate this problem, the user naturally
would have to adjust the tolerance of the relevant pa-
rameters in a particular range in order to recover the
region of weak shocks, but this would adversely affect
the cluster grid points in a large portion of the domain.
Thus, in such circumstances, this approach has a ten-
dency to excessively increase the total number of grid
points in the field.

Adaptive grid results for the problem mentioned
have been obtained by the simple implementation of
the geometry-adaptive grid concept in conjunction with
the refinement approach. The geometry-adaptive grid
approach is simple and practical only for those cases
in which the user has a priori knowledge of the critical
regions of the field, and in which the bounding surfaces

of these regions are smooth and can be readily charac-
terized by simple geometrical definitions, such as for
annular or angular regions. For instance, the conical
shock regions at the apex of the cone example can eas-
ily be defined by two limiting conical regions specified
by the pertinent conical angles about the axis of sym-
metry. One can then single out all the elements that
fall in this region to be refined. Geometrical features
of simple critical regions can be obtained based on
a posteriori knowledge of shock positions predicted by
solutions obtained on initially nonadapted coarse grids.

An alternative procedure in the geometry-adaptive
grid approach can be used. The functional represen-
tation mechanism for grid clustering, discussed in the
beginning of the previous section, is exploited by the
geometry-adaptive grid concept. That is, positions of
points and lines in the background grid can be deter-
mined in accordance with the geometrical shape of the
critical regions. For example, by revolution of a di-
rected line segment about the symmetry axis of the
body, one can define a finite number of uniformly dis-
tributed lines in space for the background grid. These
lines can then be used by the grid generator to con-
centrate grid points in a conical-type region about the
specified line segments.

The geometry-adaptive approach can be extended
to cluster grid points in other geometrically complex,
critical regions if the limiting surfaces associated with
these regions can be easily identified. An approxi-
mate shape of the critical regions can be predicted by
the solution data obtained on an initially coarse grid.
This approach should be thought of as a complemen-
tary procedure to overcome certain shortcomings of the
solution adaptive programs, not as a replacement for
these programs.

FLOW EQUATIONS

The mathematical flow model used here is the
conservative law form for inviscid compressible flu-
ids referred to as the Euler Equations. In 3-D space
these equations are expressed as follows:

∂U

∂t
+

3∑
i=1

∂Fi(U)

∂xi
= 0 (1)
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where U = (ρ, ρu, ρv, ρw, ρε)T , and

F1 =

∣∣∣∣∣∣∣∣∣∣∣

ρu
ρu2 + p
ρuv
ρuw

u(ρε+ p)

∣∣∣∣∣∣∣∣∣∣∣
, F2 =

∣∣∣∣∣∣∣∣∣∣∣

ρv
ρuv

ρv2 + p
ρvw

v(ρε+ p)

∣∣∣∣∣∣∣∣∣∣∣
,

F3 =

∣∣∣∣∣∣∣∣∣∣∣

ρw
ρuw
ρvw

ρw2 + p
w(ρε+ p)

∣∣∣∣∣∣∣∣∣∣∣

(2)

where ρ is the density, and the Cartesian velocity com-
ponents of velocity field ~V are (u, v, w) in the (x, y, z)
direction, respectively. The equivalent notations for
velocity vector field (u1, u2, u3) ≡ (u, v, w) and coor-
dinates (x1, x2, x3) ≡ (x, y, z) are also implied. With
the ideal gas assumption, the pressure p and total en-
ergy per unit volume e = ρε can be expressed as

p = (γ − 1)(e− 1

2
ρ|~V |2) (3)

with γ, the ratio of specific heat, equal to 1.4 in air.

SOLUTION SCHEMES

The flow algorithms for unstructured grid data
can be classified in two major groups—finite element
(refs. 16, 17, 21, and 22) and finite volume (refs. 14,
15, 23, and 24) schemes. No pronounced advan-
tages or disadvantages in the application of either of
these techniques to practical multidimensional prob-
lems have been demonstrated as yet. Further specific
studies and comparisons of computed solutions with
experimental data are required. The FELISA code con-
sists of two solvers, the Taylor–Galerkin (TG) and the
Runge–Kutta–Galerkin (RK) schemes. Both are spa-
tially discretized by the usual Galerkin weighted resid-
ual finite-element methods but with different explicit
time marching schemes to steady state.

Taylor–Galerkin Scheme

Some prominent features of the Taylor–Galerkin
technique can be outlined as follows. The physical
domain of interest, Ω, consists of an assembly of non-
overlapping tetrahedral elements, which constitute the

finite-element mesh. The vertices of the tetrahedra are
referred to here as nodes. The interpolation (or shape)
functions Nj associated with nodes j, which take the
value unity at j and zero at the other nodes, are con-
sidered as the space of test or weight functions. In
FELISA, the shape functions are to be piecewise lin-
ear for all the flow variables (ρ, ρu, ρv, ρw, ρε). The
Galerkin weighted residual statement of the flow equa-
tions, equation (1), is simply the integral expression

∫
Ω

(
∂U

∂t
+

3∑
i=1

∂Fi
∂xi

)
NjdΩ = 0,

j = 1, . . . , NODES (4)

where NODES is the total number of nodes in the
field. This is known as the weak form of the equations.
With the use of the Gaussian divergence theorem it can
be restated as

∫
Ω

∂U

∂t
=

∫
Ω

(
3∑
i=1

Fi
∂Nj
∂xi

)
dΩ

−
∫
Γ

(
3∑
i=1

Fini

)
NjdΓ (5)

where n ≡ (n1, n2, n3) denotes the outward unit nor-
mal to the boundary surface Γ of domain Ω.

Linear finite-element interpolatory expressions U∗

and F∗i for the solution and flux vector are given by

U∗(x, t) =
∑
k∈Ω

U∗k (t)Nk(x), and

F∗i =
∑
k∈Ω

FikNk(x) (6)

where Fik ≡ Fi(U
∗
k ). The expression k ∈ Ω reads as

“every node k in Ω.” A semidiscrete system of equa-
tions for nodal values U∗k would result, upon insertion
of these expressions in equation (5), in

∑
k∈Ωj

(∫
Ωj

NjNkdΩ

)
dU∗k
dt

=

∫
Ωj

 3∑
i=1

F∗i
∂Nj
∂xi

 dΩ−
∫
Γ

 3∑
i=1

F∗i

NjdΓ

(7)
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where Ωj is the subdomain of all elements containing
node j. This is apparent from definition of the shape
functions; the summation also accounts for the ele-
ments surrounding node j. These equations form a sys-
tem of nonlinear ordinary differential equations whose
temporal discretizations are discussed later. It should
also be noted that the disappearance of the derivatives
of flux terms in this variational formulation permits ex-
ploitation of the important class of discontinuous con-
stants or linear approximations for computation of the
fluxes. Because of the nature of the explicit time inte-
grations, the procedure does not lead to the assembly
of the so called “stiffness matrix,” as is the case for the
finite-element approximation of the elliptic differential
equations. The solution vectors on the right side of
equation (7) are known from the previous time-level
calculation. The volume integral terms are assembled
locally on each element, with a single loop over each
element (ref. 17) sending its contribution to each node.

Taylor–Galerkin Time-Marching Scheme

The Taylor–Galerkin discretization is similar to an
explicit, central-difference (midpoint quadrature rule),
finite-element-based method. Application of the mid-
point quadrature rule to equation (7) and elimination
of the asterisks gives

∑
k∈Ωj

Mjk
Un+1
k − Unk

∆t

=

∫
Ωj

(
3∑
i=1

F
n+1

2
i

∂Nj
∂xi

)
dΩ

−
∫
Γ

(
3∑
i=1

F
n+1

2
i ni

)
NjdΓ (8)

where the superscript n denotes time level t = tn, and

Mjk ≡
∫
Ωj

NjNkdΩ =
∑

e∈Ωjk

∫
Ωe

NejN
e
kdΩ (9)

The quantities Mjk are known as entries of the stan-
dard (or consistent) finite-element mass matrix. The
sub- and superscripts e on Ω and the shape functions
are used to emphasize restriction to this element. The
symbol Ωjk denotes the subdomain of all elements
containing nodes j and k. The first term on the right

side of equations (7) and (8) leads to the expression
known as the stiffness matrix, Kjk. With an approxi-
mation for the flux term, as in equation (6), this term
can be recast as

∑
k∈Ωj

(
3∑
i=1

FikKjk

)
(10)

where Kjk ≡
∫
Ωj

Nj
∂Nk
∂xi

dΩ. Computations are per-

formed in a two-step Taylor–Galerkin manner similar
to a two-step family of Lax–Wendroff schemes.

The first step requires an approximation for the

intermediate value of the solution vector Un+1
2 , at

time level tn+1
2 . A truncated Taylor expansion of U

up to the first order is used, and the time derivative,
∂U/∂t, at tn is replaced by equation (1), yielding

Un+1
2 = Un − 1

2
∆t

3∑
i=1

∂Fni
∂xi

(11)

The spatial discretization of this equation is achieved
by the Galerkin scheme. Here the piecewise lin-
ear approximations for the dependent values Un and
Fni = Fi(U

n) are used. The piecewise constant in-
terpolation functions, Pe, associated with element e,
defined as having the value unity on e and zero on the

others, are employed for the approximation of Un+1
2 .

The piecewise constant functions are used as weighting
functions in the Galerkin formulation

Un =
∑
j

Unj Nj , Fni =
∑
j

FnijNj ,

Un+1
2 =

∑
e∈Ω

U
n+1

2
e Pe (12)

where Fnij = Fi(U
n
j ). For piecewise constant weight-

ing functions PE associated with elements E, the vari-
ational relation takes the form

∑
e∈Ω

(∫
Ω
PePEdΩ

)
U
n+1

2
e

=
∑
j

(∫
Ω
NjPEdΩ

)
Unj

−1

2
∆t
∑
j

(∫
Ω

∂Nj
∂xi

PEdΩ

)
Fnij (13)
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Because PE is only nonzero on E, and the partial
derivatives ∂Nj/∂xi are constant over each element,
equation (11) reduces to

VΩE
U
n+1

2
E =

∑
j∈ΩE

(∫
ΩE

NjdΩ

)
Unj

−1

2
∆tVΩE

∑
j∈ΩE

( 3∑
i=1

∂Nj
∂xi

Fnij

)
(14)

The term ΩE restricts the domain of integration over
the element E, and VΩE

denotes its volume. The ele-

mental values U
n+1

2
E can then be readily calculated.

These algorithmic procedures have been imple-
mented in the FELISA code in a slightly different
and more simple manner. An approximate value of
the intermediate solution is sought in terms of the
known piecewise linear representation at time tn and
the piecewise constant approximation for the incre-

ment δU , i.e., Ûn+1
2 = Un + δUn+1

2 . An approx-

imation for Un+1
2 can be obtained from the same

Galerkin procedure when it is applied to the relation
δU = −1

2∆t
∑ ∂Fi

∂xi
, with the piecewise constant and

linear approximations δUn+1
2 =

∑
e
δU

n+1
2

e Pe and

Fni =
∑
j
FnijNj for the incremental values and flux

terms, respectively. These relations are an interpre-
tation of equation (9). The elemental values of the
incremental solution are then obtained, as before, by
the Galerkin approach, thus:

δU
n+1

2
E = −1

2
∆t

∑
j∈ΩE

(
3∑
i=1

∂Nj
∂xi

Fnij

)
(15)

A piecewise linear discontinuous representation of the

intermediate solution Û
n+1

2
E within each element E,

and its pertinent nodal values Û
n+1

2
j are expressed as

Û
n+1

2
E =

∑
j∈ΩE

Unj Nj + δU
n+1

2
E and

Û
n+1

2
j = Unj + δU

n+1
2

E , for each j ∈ ΩE (16)

The second step requires an approximation of the so-
lution at time level tn+1. The Galerkin formula-
tion is applied to a Taylor expansion of U that con-
sists of a first-order remainder term in time interval
∆t = tn+1 − tn. The expansion is expressed as

Un+1 = Un −∆t
3∑
i=1

∂F̂
n+1

2
i

∂xi
(17)

The piecewise linear interpolation functions are used
for weighting functions as well as approximations for
Un and Un+1. Flux terms at the intermediate time
level, however, are produced by the piecewise linear
discontinous approximations

F̂
n+1

2
iE =

∑
j∈ΩE

F̂
n+1

2
ij Nj , F̂

n+1
2

ij = Fi(Û
n+1

2
j )

(18)

where the nodal values of the flux terms, F̂
n+1

2
ij , at

the intermediate time level tn+1
2 are computed by the

values of Û
n+1

2
j obtained in the first step.

The desired nodal values of the solution Un+1
j

can be calculated from the Galerkin expression, equa-

tion (8), with F
n+1

2
i replaced by F̂

n+1
2

i . The integrals
on the right hand side of this expression, denoted by
RESj , represent the residual vector of element contri-
butions to node j and can be evaluated explicitly. The
expression leads to an implicit algebraic relation for
the time increment value

∆Unk = Un+1
k − Unk ,

∑
k∈Ω

Mjk∆Unk = RESj (19)

and can be solved by a Jacobi iteration procedure orig-
inally proposed by Donea (ref. 25). This is done by the
simple decomposition Mjk = ML

jk + (Mjk −ML
jk),

where ML
jk denotes the entries of the lumped (diago-

nal) mass matrix and takes the value of zero if j 6= k,
and

∑
s∈Ω

Mjs if j = k. Equation (19) then takes the

form

ML
jk

∣∣∣∣
j=k

∆U
n(r)
j = RESj − ε

∑
k∈Ω

×
(
Mjk −ML

jk

∣∣∣∣∣
j=k

)
∆U

n(r−1)
k (20)
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where (r) denotes the current iteration number and
ε = 1. Starting with ∆Un(0), three iterations are usu-
ally sufficient for convergence. This concludes the
time-marching procedure for one time interval.

Boundary conditions are implemented in the sec-
ond step of the Taylor–Galerkin scheme through the
second integral term—the boundary integral—on the
right side of equation (8). The intermediate values
calculated in the first step are corrected by applying
a characteristic analysis of the linearized Euler equa-
tions in a coordinate system tangential and normal to
the boundary. The corrector step consists of enforc-
ing subsonic/supersonic inflow, outflow, and solid wall
conditions near the boundary. The solver currently ac-
counts for no explicit enforcement of a Kutta condition
or other special treatment at the trailing edge. A de-
tailed discussion of the characteristic analysis can be
found in a recent book by Hirsch (ref. 26). The result-
ing pointwise corrected values at boundary points in-
fluence the nodal values of the intermediate fluxes. The
modification procedure is applied in a post-processing
manner where the boundary integral calculations are in-
voked. This approach incorporates the effect of bound-
ary conditions only in an average, or so-called weak,
sense. The inviscid wall boundary condition of zero
normal velocity is imposed by projection. That is, the
pointwise value of the predicted velocity at the wall is
replaced by its projection vector on the wall.

Artificial viscosity terms are added to the right
side of equation (8), explicitly, in order to control oscil-
lations, and overshoots in the vicinity of the steep gra-
dients such as shock waves, discontinuities, and vortex
sheets, where dissipation effects or shear stresses take
place in very thin layers of the flow. A detailed discus-
sion of the numerical dissipation can be found in ref-
erences 17 and 27. The method has implemented the
McCormack modification of Lapidus artificial vis-
cosity, proposed for finite difference, in conjunction
with the finite-element solver. The diffusion term
here is further simplified to avoid computation of the
second-order derivative pressure terms in the linear
finite-element approximations, which precludes the ex-
pensive process of performing a variational recovery
(ref. 27).

The concept of smoothing the solution Un+1 at
the end of each time step by means of the above
Galerkin approximation of the diffusion equation gives

Un+1
j

∣∣∣∣
smooth

= Un+1
j + ∆tjCs

( ∑
k∈Ωj

ML
jk|j=k

)−1

×
( ∑
k∈Ωj

(
Se

∆te
)

∣∣∣∣
e∈Ωjk

(Mjk −ML
jk |j=k)Un+1

k

)
(21)

where Cs is a user-specified constant. Se is the ele-
ment pressure switch coefficient, whose value is given
in terms of the mean of the element nodal values Si:

Si =
∑
k∈Ω

[(Mik −ML
ik |i=k)Pk]

|(Mik −ML
ik |i=k)Pk|

(22)

where Pi is the nodal value of pressure at node i, and
∆te and ∆ti are local elements and nodal time steps
whose values (ref. 27) are determined in accordance
with Courant-type stability criteria. The node time
step, which is used in the second step of the Taylor–
Galerkin scheme, is calculated by averaging the ele-
ment time steps surrounding each node. The element
time steps are known from the first step of the Taylor–
Galerkin scheme.

Local time-stepping methods are known as valu-
able tools for accelerating solutions to time-asymptotic
steady states. These methods are particularly impor-
tant in the context of the solution adaptive approach.
Meshes of small grid spacings that are concentrated in
the critical regions require a very small time step lim-
ited by the local Courant number. This requirement
would then limit the global time stepping if a spatially
fixed time step needed to be used. The reader should,
however, be aware of some controversial issues regard-
ing local time stepping which have not been thoroughly
proven. Reference 28 reports an anomalous behavior
of solutions obtained by the use of spatial-varying time
steps. The discussion in reference 28 is of a precaution-
ary nature. For certain applications, it was observed
that solutions can lead to nonphysical transients which
may eventually converge to a nonphysical asymptotic
solution. It was not concluded that this phenomenon is
independent of the particular recipe for local varying
of the time step, nor were the effects of the compu-
tational grids and numerical dissipation terms strongly
addressed. In the results presented here, we did not
observe this phenomenon, and no attempt was made
to study the aforementioned effect pertinent to the
FELISA code. A further relevant possibility is that,
from the computation of a fictitious transient at each
time step, errors could arise which might propagate
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through the entire solution domain. This effect might
slow the convergence rate.

From Fourier analysis of numerical errors (ref. 26),
it can be argued that, since local time steps are es-
sentially computed in the close vicinity of the stability
limit (unit Courant number everywhere in the domain),
greater solution accuracy will be obtained than with
the spatially global fixed time step. The latter case,
which enables the true transient calculation because of
the existence of drastically varying element sizes in
the domain, is restricted to computing with Courant
numbers much smaller than unity, which is known to
render less accurate steady-state solutions. The code
has not been provisioned to calculate the real transient
or time-accurate solutions, and therefore is only of use
for the solution of steady-state problems.

The residual averaging method (ref. 23) has also
been implemented in the code to increase the time step.
The increment ∆Uk in equation (20) is replaced by
a weighted average of increments at its neighboring
nodes and ε is now a small negative number (≈ −0.4).
Using the weighted average smooths out the residuals
in a Laplacian fashion and leads to an increase in the
permissible time step.

In the absence of grid structure, the computer im-
plementation of the method encounters certain com-
pexities, such as memory storage, indirect addressing
(i.e., gather–scatter operations), and access of memory
vectorization, which require particular handling. The
geometrical data, as well as the usual x, y, z coordinate
arrays per node, include an element-node connectivity
array consisting of four integers associated with each
tetrahedral element. It also includes a boundary array
described by three integers associated with the nodes
of a triangular facet at the boundary and integers indi-
cating the adjacent element and the boundary condition
marker, such as the far field, the wall, etc. More stor-
age space for geometrical quantities such as volume
and partial derivatives of shape functions per element
(appearing in the Kjk terms) is required in order to
avoid recomputation of these quantities at each time
step. The overall memory requirements of the code
add up to 100 words per node. The CRAY Y-MP CPU
time spent per iteration and per node is a fraction of
10−5 sec. Usually three to five thousand iterations are
required to attain a converged solution starting from
the initial free-stream conditions; and at such an event
the mean residual values would drop about three to

four orders of magnitude. It has been found that for
grids consisting of a large number of elements with
substantial spatial variation of the element length, fur-
ther iterations would decrease the residue only a little.
This is due to integrated numerical errors introduced
by the quality of the grid, or by the explicit nature of
time integrations, or by the artificial viscosity effects,
where parasitic numerical solutions or possibly false
transients are not damped out properly. This prob-
lem, according to our knowledge of other 3-D explicit
codes, is not unique to this code.

Runge–Kutta Time-Marching Scheme

The Galerkin statement (eq. (7)) for a single for-
ward explicit time step and with the consistent mass
matrix Mjk replaced by the lumped (diagonal) mass

matrix ML
jk|k=j can be written as

ML
jk|k=j∆U

n
j = ∆t Qj (23)

where Qj is the right side of equation (7) evaluated at
tn. The Runge–Kutta scheme implemented in FELISA
has adopted an alternative procedure for discretization
of Qj . Here edge-based computations, rather than the
usual standard finite-element procedure of looping over
the individual elements and sending element contribu-
tions to each appropriate node, are considered. It is
shown in reference 29 that the discretization of Qj can
be interpreted by means of edge contributions to the
pertinent nodes. The associated data structure would
consist of the list of the nodes j and k for each side in
the mesh. The memory storage requirement reduces to
about 70 words per node, which is the most compact
of the various possible alternatives.

It can also be shown that this data structure effi-
ciently lends itself to the computation of the artificial
viscosity in a manner similar to that used in the Taylor–
Galerkin scheme. Equation (23) with inclusion of the
artificial viscosity term denoted by Dj(U) at a general
node j can be expressed as

∆Unj = ∆t
(
ML
jk|k=j

)−1
Rj (24)

where Rj(U) = Qj(U) + Dj(U). A multistage time
discretization of equation (24) can be written as
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U
(0)
j = Unj

...

U
(p)
j = U

(p−1)
j − αp ∆t (25)

×
(
ML
jk|k=j

)−1
Rj(U

(p−1)
j )

...

Un+1
j = Um−1

j

where p = 1, . . . ,m − 1 and with the parameters αp
assigned appropriate values. A variable time step close
to the stability limit is imposed by the Courant number,
CFL, at each mesh point. The time-marching scheme
in this code has only been considered for nontransient
problems, and convergence to steady state is acceler-
ated by local time stepping. Far-field boundary condi-
tions, as in the Taylor–Galerkin scheme, are imposed
pointwise at each step based on a linearized character-
istic analysis in the direction normal to the boundary.
Inviscid wall boundary conditions are imposed likewise
in the Taylor–Galerkin scheme.

RESULTS

Calculations were performed to assess the overall
performance of the code FELISA. Several applications
to geometrically simple 2- and 3-D problems ranging
from transonic to supersonic are discussed. The 2-D
test problems have been geometrically modeled as 3-D
problems so that FELISA could be applied; the bound-
ary conditions are chosen so that the 2-D flow field is
simulated. The models considered are a NACA 0012
and a double-wedge profile. The 3-D problems con-
sist of three wind tunnel models—a low-aspect-ratio
wing, a cone cylinder, and a wing-body configura-
tion at supersonic Mach numbers near 2.0—for which
wind-tunnel-measured off-body pressure signatures ex-
ist. These models are generic configurations used for
sonic boom prediction. Unless otherwise specified,
most of the computational results discussed below are
obtained by the Taylor–Galerkin scheme in FELISA.

NACA 0012

The NACA 0012 transonic wing is one of the
standard test cases frequently used for bench marking

many CFD algorithms in 2-D. For the current applica-
tion, a 3-D nonvarying-cross-section wing was gener-
ated from the 2-D NACA 0012 profile definition. The
wing at both ends is mounted between two parallel
planes in the y-coordinate (spanwise) direction. With
the aid of reflection wall boundary conditions (sym-
metry type) at the mounting planes, a 2-D flow-field
solution results. Several flow conditions and meshes
have been considered. For free-stream Mach number,
M∞, equal to 0.85 and 0 deg incidence, a 3-D tetrahe-
dral mesh has been generated about the model which
consists of a relatively dense grid in the region of the
shocks. This mesh has been geometrically adapted to
the region of expected shocks. For reasons discussed
herein, the solution adaptivity programs in FELISA,
remeshing or refinement techniques, failed to produce
new grids for the several trial runs made. However,
because of the geometrical simplicity of the shock re-
gions, whose locations were easily predicted from an
analysis of the solution obtained on a relatively uniform
grid, adaptation of the grid was readily set by defining
a slab region about the shock. The grid was clus-
tered about the leading and trailing edges set by means
of exponential distribution functions in the code. The
3-D mesh consists of 99,000 tetrahedral elements and
23,000 grid points.

Figure 1(a) shows an expanded view of the mesh
on one of the planes with symmetry-type boundary
condition. Figure 1(b) displays surface pressure co-
efficients, Cp, along the chord, and figure 1(c) shows
a partial view of the computed Mach contours on the
symmetry plane. Regions of supersonic flows in the
upper and lower surfaces are fairly symmetric and the
shock is captured relatively smoothly. Figure 1(d)
shows a partial view of the Mach contour solution at
M∞ = 0.85 and 1 deg incidence, and figure 1(e) dis-
plays the corresponding surface pressure. Some slight
oscillation is observed behind the shocks. Solutions
have also been obtained at M∞ = 0.95 and 0 deg
incidence on the same mesh displayed in figure 1(a).
Mach contour solutions are shown in figure 1(f): here
we can see that the fishtail-like shock formed at the
trailing edge is fairly spread out. This is an expected
result of the coarseness of the grid, since the cluster-
ing of the grid points is not in the region where the
shocks developed. Solution adaptive programs were
tried again but failed to concentrate the grid in the
critical regions because of program bugs, as before. A
similar geometry adaptive grid approach was used to
cluster the grid in the fishtail-like shock regions. The
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new grid consists of approxmately 118,000 elements
and 27,000 points. Figure 1(g) shows an expanded
view of this geometry adaptive grid on the symmetry
plane. Figure 1(h) displays a partial view of the corre-
sponding Mach contour solutions; here we can see that
shocks are captured much more crisply than before.
Predicted locations of shocks and surface pressure dis-
tributions for these ranges of Mach numbers and an-
gles of attack agree closely with those predicted by
the advanced CFD techniques that use dense structured
grids about the NACA 0012 profile in 2-D simulation
(ref. 30). Steady-state solutions were obtained within
3,000 time iterations for which the L2 norm of the
residue had dropped three orders of magnitude. Fur-
ther iterations did not significantly change the residue.

Double Wedge

The second 2-D test case used to assess the
FELISA code was a supersonic flow past a 6-deg
double-wedge profile at M∞ = 1.75 and 0 deg in-
cidence. A 3-D geometric model of this profile that
simultates 2-D flow conditions was modeled in ex-
actly the same fashion as for the NACA 0012 pro-
file. The inital coarse grid consists of approximately
43,000 elements and 10,000 grid points. Figure 2(a)
shows an expanded view of the initial mesh on the
symmetry plane. Figure 2(b) displays a partial view
of the computed Mach contours on the same plane,
and figure 2(c) gives surface pressure plots along the
chord. The characteristics of the flow include leading-
and trailing-edge shocks and expansion waves at the
wedge. Because of the coarseness of the grid, shocks
are smeared out, and consequently the accuracy of the
solution is rather poor in that area. Figure 2(c) shows
a comparison of the computed surface pressure with
the theoretical shock-expansion results; some oscilla-
tions in the solution are observed in regions of shocks
and the expansion fan. The width of these regions is
spread out over several grid cells. An enhancement
of the solution can be achieved by the clustering of
more grid points in the shock regions. This procedure
is successfully accomplished by the FELISA remesh-
ing, solution adaptive program, in two iterations. First,
the solution obtained on the initial coarse grid is used
in conjunction with the remeshing procedure; then the
Mach number is selected as the “key” variable for the
error indication or the driving mechanisim for grid re-
distribution. Figure 2(d) shows an expanded view of
the first solution adaptive grid; here, one can see that

the grid points are relatively concentrated in the shock
regions, as expected. Using this new grid, FELISA
was run again for the same flow conditions and a new
solution was obtained. The new solution was again
used in the same manner in conjunction with remesh-
ing to cluster further grid points in the critical regions.
Figure 2(e) shows the second solution adaptive grid
on the symmetry plane. Here, the grid points are not
only more dense in critical regions, but they trace the
shock footprints more crisply than the first solution
adaptive grid. This mesh consists of 114,000 elements
and 26,000 grid points. Figure 2(f) shows the partial
view of the Mach contours on the second solution adap-
tive grid. Shock waves are resolved more crisply and
clearly (with less noise on the contour lines) compared
with the solution pertinent to figure 2(b). Finally, fig-
ure 2(g) depicts predicted surface pressures obtained
on the second solution adaptive grid in comparison
with the theoretical solution. Results are noticeably
enhanced in that the shock is less spread out. Wiggles
at the leading and trailing edges due to shocks, and
at the wedge due to expansion, although still present,
are smaller than in the solution obtained on the initial
grid. For all the applications in this example, the code
was run for 4,000 time steps and the L2 norm of the
residue dropped four orders of magnitude.

SONIC BOOM EXAMPLES

The problems discussed here will show the ex-
tent of the applicability of FELISA to the sonic boom
examples listed. Off-body pressure signatures at cer-
tain distances from the model are extracted from the
computational results and in some cases have been ex-
trapolated to distances farther away from the body for
comparison with the pertinent experimental data. The
extrapolation algorithm is based on the Witham the-
oretical method known as the F function, developed
for N -wave-like propagation. For detailed information
on the geometry and for alternative CFD/experimental
correlations related to off-body pressure signatures of
these models, see reference 31.

Low-Aspect-Ratio Wing

The first sonic boom model is a 0.5-aspect-ratio
rectangular wing with parabolic sections. Computed
solutions are obtained at M∞ = 2.01 and 0 deg an-
gle of attack. Because of geometrical symmetries,
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only one quadrant of the flow field has been dis-
cretized. Flow features consist of leading- and trailing-
edge shocks and expansion waves generated along the
convex surface of the wing. Figures 3(a) and 3(b)
display a sectional view of the nonadapted initial sur-
face grid on the xy and xz planes of symmetry and
a quadrant of the wing surface. The grid consists of
245,000 elements and 44,000 points. Figure 3(c) shows
a sectional view of Mach contours on the surfaces
described above. The computed pressure signatures,
∆p/p∞, ∆p = p − p∞, along a line on the xz sym-
metry plane one chordlength above the wing (visible
in fig. 3(a)) are shown in figure 3(d) compared to cor-
responding wind tunnel results. Signatures are plot-
ted against x/c, where x = 0 is at the wing leading
edge and c denotes the chord. It can be seen that
the computed solution overestimates the pressure rise
caused by both the leading-edge shock and the pres-
sure fall from expansion. The pressure rise resulting
from the trailing-edge shock is better. Discrepancies
are attributed to the coarseness of the initial grid in the
critical regions.

Remeshing procedures are used to enhance sev-
eral solutions, using solution adaptive programs. Two
of these are discussed here. Mach number has been
used as a “key” variable for grid redistribution. Fig-
ures 3(e) and 3(f) show a sectional view of the so-
lution adaptive grids on the symmetry planes and an
expanded view of the wing. Both figures are enmeshed
in a denser grid, although the volume grid here glob-
ally consists of fewer grid points—95,000 elements
and 19,000 points. Grid clustering follows the oblique
shocks attached to the leading and trailing edges. Fig-
ure 3(g) shows Mach contour solutions for the same
surfaces; in comparison with figure 3(c), shocks ap-
pear more crisp. Computed and experimental pressure
signatures shown in figure 3(h) are also reasonably im-
proved and are in fair agreement. Here, the leading-
edge shock is slightly underestimated as a result of the
degree and quality of grid concentrations.

Another solution adaptive grid application
that has been successfully pursued is shown in
figures 3(i)–3(k). Figure 3(i) shows a solution adaptive
grid that traces footprints of leading- and trailing-edge
shocks in a more pronounced fashion. Mach contour
solutions in figure 3(k) are more crisp than those in
figure 3(g). The volume grid here consists of more grid
points: 171,000 elements and 34,000 points. Again,
as depicted in figure 3(l), computed and experimental
solutions are in reasonable agreement. The pressure

rise as a result of the trailing-edge shocks is improved
compared to that of the previous solution adaptive case,
and the solution is generally smoother. However, the
pressure rise resulting from the leading-edge shock and
the following expansions are slightly underestimated.
Discrepancies in the results are probably due to den-
sity adjustments or perhaps from some skewness of the
pertinent 3-D grids. All of the solutions are obtained
within 4,000 to 6,000 time iterations.

Several other solution adaptive results were com-
piled with similar outcomes, and several attempts failed
completion for some selected parameters in the code.
Our experiences here with solution adaptivity on un-
structured grids, and on structured (ref. 8) grid ap-
proaches for 3-D problems, indicate that the adaptivity
does play an important role in the considerable en-
hancement of the solution. However, the main issues
here are not merely grid clustering but the initial capa-
bility to detect the critical regions of the solution prop-
erly, and at the same time generate nonskewed grids
that are dense enough to progressively enhance the
solution. Tuning several code parameters to achieve
these goals without failure of the program is currently
a formidable task. Further rather fundamental work
must be done in order to alleviate the present ad hoc
guessing procedures for setting code parameters. Our
results were affected by these types of limitations.

Cone Cylinder

The second sonic boom model is a sharp cone
(conical spike) with a cylindrical attachment at its base
representing the sting. The cone surface is linear and
its half-angle is 3.24 deg. A quadrant of the model has
been considered for discretization of the flow field. Be-
cause of the small cone angle, this model has been a
particularly challenging geometry for the grid gener-
ator. Surface grid data near the cone apex were re-
generated so that the aspect ratio of the (m − 1) by
(n− 1) quadrilateral patches was maintained at about
five to eight, and so that neighboring patch areas were
smoothly changed on departure from the apex. The
flow field solution is obtained at 0 deg angle of attack
for M∞ = 1.68. The main feature of the flow field
is an attached weak bow shock at the cone apex and
an expansion wave at the cone and cylinder section;
the geometry-adaptive grid method is used to concen-
trate the grid points in the critical regions. Because of
the simplicity of the problem here, the conical shock
inclination may be approximated by the Mach angle
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µ pertinent to the Mach wave characteristic. This ap-
proximation is then used to generate a set of lines lying
on a conical surface with half-angle µ that can be input
in the background grid file for concentrating the grid
points in the critical regions at the apex and the cone
cylinder.

Figures 4(a) and 4(b) display the sectional
view of the geometry adaptive grid on the xy and
xz symmetry planes and the model surface. The grid
consists of 320,000 elements and 61,000 points. Solu-
tions have been obtained for 5,000 time iteratons where
the residue has dropped three orders of magnitude and
a steady state is achieved. Mach contours are shown
in figure 4(c). The pressure signature data are obtained
half a body length away from the surface (visible in
fig. 4(a)) in the free-stream flow direction. These data
are then extrapolated to the wind tunnel measurement
distance of ten cone lengths off-body. The comparison
between predicted and measured results is shown in
figure 4(d). (It should be noted that in figs. 4–9, x = 0
does not correspond to x = 0 of the body coordinate
system). This figure also contains a multiblock grid
solution by the structured grid solver TEAM (ref. 31).
Results appear to be in agreement near the shock but
differ slightly near the expansion wave. The inconsis-
tency is believed to be due to the coarseness of the grid
to the right of the expansion wave.

Delta Wing-Body

The third model is a slender delta wing-body with
a delta-wing planform with a leading-edge sweep of
69 deg and a diamond-shaped double-wedge airfoil.
Grid generation about this model, which has a slender
forebody with small vertex cone angle and a body–
sting connection, has also been a challenging task. Be-
cause of symmetry at the constant y = 0 coordinate
plane, the flow field about only half of the model is
considered. Primary flow features consist of shocks
and expansions of the forebody at leading and trailing
edges and at the base of the body–sting regions. This
model has been used in conjunction with our numeri-
cal experiments for several purposes: for comparison
of flow algorithms in FELISA, to test solution adap-
tivity, to study the geometrical effect of the body–sting
step- and ramp-function connections, and, finally, for
computations at nonzero angles of attack at different
Mach numbers.

An initial relatively coarse grid is generated which
consists of 423,000 elements and 79,000 points. In
the results that follow, our intention has been to fo-
cus our effort on the flow features developed in re-
gions between the body nose and the base. The sting
extends back about two body lengths and has been
truncated as a conical surface. No attempt has been
made to resolve shocks at the artificial end of the sting.
An expanded view of the symmetry-plane triangula-
tion and an isometric view of the surface triangula-
tion of the model are shown in figures 5(a) and 5(b).
Two flow solvers in FELISA, the Taylor–Galerkin and
Runge–Kutta schemes, are used and computed solu-
tions by each of the solvers at 0 deg angle of attack
for M∞ = 1.68 are compared with the wind tunnel
data. The near-field pressure signature data are ob-
tained on a line away from the body parallel to the
body axis of symmetry (x axis), and on the symme-
try plane with altitude ratio h/l = 0.3. Here, h is
the distance of the line from the x axis and l is the
reference body length. The h/l = 0.3 solution is ex-
trapolated (ref. 31) to the experimental measurement
distance of h/l = 3.6. Extracting off-body pressure
signatures from the unstructured solution data is ac-
complished by a simple interpolation procedure. A
data acquisition line of finite length, with n sample
points uniformly distributed between its two ends, is
defined. The numerical values at each sample point are
computed by averaging the solution data on the clos-
est grid points; the results are plotted in figures 5(c)
and 5(d). The computed results obtained by the Taylor–
Galerkin scheme (fig. 5(d)) overall are in better agree-
ment with the experimental data than are those obtained
by the Runge–Kutta scheme (fig. 5(c)). The Runge–
Kutta solver underestimates the pressure rise as a result
of shocks at the apex and leading and trailing edges;
similarly, expansions are underestimated. The notice-
able disagreement between computed and experimen-
tal data toward the end of the signature plots for both
methods is thought to be caused by the flow circula-
tion at the base of the body where the backward-facing
step connection between the body and the sting is a
factor. The discrepancy becomes noticeably reduced
when a 12-deg ramp body/sting connection is used (see
also ref. 31). Furthermore, the Runge–Kutta solver ap-
pears to be more dissipative; shocks and expansions are
more spread out than with the Taylor–Galerkin scheme.
Some nonsmoothness of the plot lines is related to the
interpolation procedure.
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To enhance the solution, solution adaptive pro-
grams were applied. The remeshing technique was
tried, but it failed as a result of program bugs, as
before. The refinement technique with local Mach
number chosen as the key variable could not prop-
erly detect and concentrate the grid at critical regions
of shocks and expansions. Tuning the tolerance pa-
rameters to refine more tetrahedra would result in al-
most global refinement of the mesh and yield unaccept-
ably large mesh sizes. This approach not only would
exceed the practical limits of our resources but also
would not serve the purpose of the concept of solution
adaptivity.

The shortcoming of the adaptivity procedure was
overcome by the geometry-adaptive grid program. A
conical region about the apex and a slab region about
the leading and trailing edges were specified, and all
tetrahedral elements falling in these regions were then
refined. Figures 5(e) and 5(f) display an isometric view
of the adapted grid on the symmetry plane and the
model, and the surface of the model alone. The grid
consists of 930,000 elements and 169,000 points. Fig-
ures 5(g) and 5(h) display pressure signature results
obtained by the Runge–Kutta and Taylor–Galerkin
schemes, comparing them with the experimental data.
The Runge–Kutta solution does not show an improve-
ment compared with the previous solution (fig. 5(c)). A
possible explanation here is insufficient grid refinement
with the Runge–Kutta algorithm. The Taylor–Galerkin
solution, on the other hand, has slightly improved pre-
diction signatures caused by expansion waves over the
wing.

Several other combined applications of the re-
finement technique with the geometry-adaptive grid
program have been tried. A grid consisting of
1,150,000 elements and 169,000 points has been gener-
ated. Figures 5(i) and 5(j) show isometric views of the
grids and figure 5(k) shows the comparison of the pres-
sure signatures. Here we notice an improvement with
the Runge–Kutta solver; nevertheless, the dissipative
nature of this solver still persists. It should be no-
ticed that the dissipative effects experienced with this
solver of FELISA by no means should indicate similar
behavior for other solvers based on the Runge–Kutta
time integrations.

To study the effects of the geometry at the body–
sting connection and for angles of attack larger than
zero, the geometry-adaptive grid program was used to
generate more efficient grids. All the solutions be-
low are obtained by the Taylor–Galerkin solver. In

one solution, a grid consisting of 780,000 elements
and 142,000 points was generated for the rearward-
facing step-type connection geometry (as in the pre-
vious model). The second solution, using a grid of
almost the same size, was generated for a 12-deg ramp-
type geometry. This grid consists of 796,000 elements
and 146,000 points. Figure 6(a) displays grid adapta-
tion for expected features of the solution in the sym-
metry xz plane, and figure 6(b) displays an isometric
view of the model on the symmetry plane.

The near-field pressure signature data are obtained
on the same line as before, i.e., with h/l = 0.3, and
extrapolated to h/l = 3.6. The comparison of results
between prediction and measurement is shown in fig-
ures 7(a) and 7(b) for step- and ramp-shape geometries,
respectively. The bow shocks and expansion signa-
tures at the forebody and the expansions at the wing
wedge region are in close agreement, although the wing
leading- and trailing-edge shocks are slightly underes-
timated. The difference is attributed to grid clustering,
in which a slightly denser grid is required. It should
also be noted that numerical dissipative terms in the
Euler flow solvers, which are automatically account-
ing for the wake flow behavior at the trailing edge, are
another source of discrepancies between the computed
and measured data.

The solution for the ramp shape plot, figure 7(b),
shows noticeable improvement at the body–sting base
when compared with the step geometry results. It
appears that the ramp geometry introduces a pseudo-
boundary to account for flow recirculation in the case
of rearward step geometry. The choice of this ramp
angle was first suggested by Whitham (ref. 32), who
provided a detailed discussion of this matter. The pres-
ence of a slight inconsistency of the computed body–
sting base expansions and recompression shocks and
the experimental data is still thought to be related to
grid effects and flow behavior at the base, which did
not quite disappear as a result of the choice of the ramp
geometry function.

The ramp-shape body/base intersection model,
consisting of 796,000 elements, was used to obtain so-
lutions at M∞ = 1.68 and angles of attack of 2.53 deg
and 4.74 deg corresponding to lift cofficients of 0.08
and 0.15, respectively. The CFD procedure for α > 0
calculations here does not rotate the grid but does rotate
the free-stream velocity vector. The CFD data acquisi-
tion line starts at h/l = 0.3, positioned below the body
nose, and is parallel to the free-stream direction; h/l at
the other end of the acquisition line becomes smaller
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as α gets larger. Computed results are extrapolated to
h/l = 3.6 along a line also parallel to the free-stream
direction and are generally in close agreement. Results
are displayed in figures 8(a) and 8(b). The strengths
of the leading- and trailing-edge shocks in both figures
are slightly over- and underestimated, respectively. It
should be noted, particularly for additional results to be
discussed, that the adaptive grid used here was made
for M∞ = 1.68 and α = 0 deg. It should not be
expected to be the best grid distribution for obtaining
the solution at different Mach numbers and at angle
incidences larger than zero.

Finally, our last computational results are a com-
parison of solutions obtained at M∞ = 2.7 and
α = 0 deg, 3.47 deg, and 6.52 deg. Figures 9(a)–
9(c) display these results. Computed solutions are ob-
tained by interpolation, as before, on the data acquisi-
tion line of h/l = 0.3 at the nose of the model, ex-
trapolated to h/l = 3.1. The grid is the same adaptive
grid consisting of 796,000 elements with ramp-shape
body/sting intersection. Consequently, the computed
results show loss of accuracy for larger angles of at-
tack. For α = 0 deg, the computed solution agrees
satisfactorily with experimental data; the leading-edge
shock is not adequately predicted, but the bow and tail
shocks are captured more sharply than by experiment.
For α = 3.47 deg and 6.52 deg (figs. 6(b) and 7(c),
respectively) we observe interaction between the bow
and wing shocks at the leading edge. In the latter case,
shocks have nearly coalesced. The overall strength of
the shocks predicted are in close agreement with exper-
iment, although discrepancy resulting from interaction
is particularly pronounced for the case α = 3.47 deg.
In addition, the trailing-edge shock and signatures at
the base/sting intersections are not well resolved.

The following comments should be considered in
relation to these results. (1) The grid used for the
above calculations, as mentioned earlier, was gener-
ated for α = 0 deg and M∞ = 1.68 and would not be
expected to be entirely appropriate for M∞ = 2.7 cal-
culations. The Mach wave angle for the larger Mach
number is about 21 deg compared to 36 deg for the
smaller Mach number. The difference in Mach wave
angles indicates that the direction of concentrations of
grid points for the 36-deg case is not suitable for the
21-deg case. (The higher the Mach number, the higher
the propagation speed of disturbances and the higher
the strength of shocks; grid clustering, then, must be
properly done, particularly for larger angles of attack.)

(2) The dissipation term used in the code may be un-
suitable for shock interaction cases and/or wake com-
putations. (3) The case with the higher Mach number
would be more sensitive to the body/sting intersection
model and the actual geometry of the sting itself. This
could possibly be responsible for the signature dis-
crepancy at the downstream tail shock. (4) Finally, it
should be noticed, as discussed earlier, that for nonzero
angles of attack, the extraction of data from the com-
puted solution along the data-acquisition line for inter-
polation has less altitude ratio at the downstream end
of the line. For instance, for the case α = 6.52 deg,
h/l ≈ 0.03 about two body lengths away from the nose
compared to h/l ≈ 0.3 at the nose of the model. The
difference in h/l ratio suggests that some 3-D phenom-
ena are not yet fully developed, and this would explain
the poor correlation with experiment downstream of the
tail shock. In addition, the experimental data acquisi-
tion per se may be for a different angle of attack and
may be more sensitive in cases of higher Mach num-
bers. Experimental data need more resolution for such
regions with bow and wing shock interactions.

CONCLUSIONS

An assessment of an unstructured-grid, finite-
element-based explicit code, FELISA, has been de-
scribed. The code can generate spatially smooth, vary-
ing tetrahedral grids for complex geometries. The
preparation of the geometrical data exchange, depend-
ing on the complexity of the model, could be quite time
consuming; however, because of the coherent defini-
tion used in representing the geometry, the procedure
could be easily automated. Lack of well tuned con-
trol parameters could generate skewed elements on or
away from the surface; the program may frequently
abort without provisioned recovery capability. The
code, however, has the potential to incorporate local
treatments to alleviate this problem.

The flow solver based on the Taylor–Galerkin
method has produced reliable results for steady state,
inviscid compressible flow problems, and has been
tested on problems ranging from transonic to super-
sonic. The solution-adaptive programs need to be im-
proved and the mechanism for detecting critical regions
of the domain must be modified. Remeshing is a means
of optimizing the adaptation procedures where the den-
sity and total number of elements can come under con-
trol. The rate of success with the remeshing program
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might be greatly improved if local alleviation of the
gridding problems is incorporated. The refinement ap-
proach is simple to use but should be accompanied by
the pertinent unrefinement program to avoid excessive
increase in the total number of elements.

Despite existing problems with the adaptive pro-
grams, innovative users can find ways of tailoring
them to apply to a particular problem using geometry-
adaptive techniques. The original developers of the
code have demonstrated qualitatively impressive so-
lutions for complex geometries, and, in some cases,
their predicted results have been favorably compared
with experimental data. The overall results we have
obtained with this code have been reliable within the
scope of the problems reported here and for some
which have not been included. Further tests on more
geometrically complex configurations are neccessary to
establish the practicality of the code and the reliability
of the predicted solutions.
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FELISA, 23k points, 99k elements

Figure 1. NACA 0012 unstructured grid—99,000 elements and 23,000 points, Mach contour solution,
and surface pressure distributions. (a) Expanded view of grid on symmetry plane. (b) Surface pressure
along chord. (c) Partial view of Mach contours at M∞ = 0.85 and α  = 0 deg.
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Figure 1. Continued. (d) Partial view of Mach contours at M∞ = 0.85 and α  = 1 deg. (e) Surface pressure
distribution.
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Figure 1. Concluded. (f) Partial view of Mach contours at M∞ = 0.95 and α = 0 deg obtained on the grid
of figure 1(a). (g) Expanded view of geometry adaptive grid on symmetry plane. (h) Partial view of
Mach contours obtained on the above adapted grid.


